Diaphragm electrical activity monitoring as a breakpoint in the management of a tetraplegic child
نویسندگان
چکیده
Over the last decade, new technology has been developed to continuously record the electrical activity of the diaphragm (EAdi) at the bedside [1]. EAdi monitoring has been shown to be useful in assessing the patient’s ventilatory drive, in adjusting ventilatory support, and in detecting patient–ventilator asynchrony [2–4]. In the present case, we highlight how monitoring EAdi could be a sensitive diagnostic tool to detect spontaneous respiratory cycles in a mechanically ventilated child with tetraplegia. An 8-year-old girl was admitted to our pediatric intensive care unit (PICU) for a rapidly progressive right hemiparesis. The CT scan revealed a large C3–C4 medullary arteriovenous malformation predominantly. An urgent embolization was attempted, but severe edema and hemorrhagic transformation of venous thrombosis developed, leading to tetraplegia with dysautonomia. She underwent tracheostomy on day 12 due to the absence of spontaneous breathing. Three months later, an MRI scan showed extensive cervical cord fibrosis and atrophy at C2–C3–C4 levels (Fig. 1). On day 90, a phrenic nerve stimulation test was conducted to assess the potential for diaphragmatic pacing. No esophageal pressure deflection was induced by the stimulation. However, after a few respiratory pauses applied for the stimulation, we noted some spontaneous cycles on the EAdi recordings (about 5 μV) associated with esophageal pressure deflections (5–10 cmH2O). Continuous monitoring of EAdi was performed while decreasing the level of ventilator support, thereby confirming an intermittent and small respiratory drive (Fig. 2). Weaning using NAVA was started in order to favor the patient’s own respiratory drive, which gradually increased over time (Fig. 2). She was progressively and successfully weaned from the ventilator during daytime on day 162 and the patient was discharged home on day 374.
منابع مشابه
Design of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane
This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...
متن کاملO16: Long Term Video EEG (AC/DC) Monitoring
Long term video electro-encephalographic (EEG) monitoring (LTM) is defined as the continuous and synchronized recording of EEG and multimedia to analyze brain abnormalities. A conventional LTM system continuously records EEG in the frequency range of 0.5-70Hz. The data synchronization, the high-volume data management, the system reliability as well as noise reduction remain significant challeng...
متن کاملFabrication and Characterization of a New MEMS Capacitive Microphone using Perforated Diaphragm
In this paper, a novel single-chip MEMS capacitive microphone is presented. The novelties of this method relies on the moveable aluminum (Al) diaphragm positioned over the backplate electrode, where the diaphragm includes a plurality of holes to allow the air in the gap between the electrode and diaphragm to escape and thus reduce acoustical damping in the microphone. Spin-on-glass (SOG) was us...
متن کاملNew Design of Mems piezoresistive pressure sensor
The electromechanical analysis of a piezoresistive pressure microsensor with a square-shaped diaphragm for low-pressure biomedical applications is presented. This analysis is developed through a novel model and a finite element method (FEM) model. A microsensor with a diaphragm 1000 „m length and with thickness=400 µm is studied. The electric response of this microsensor is obtained with applyi...
متن کاملAccurate Model of Capacitance for MEMS Sensors using Corrugated Diaphragm with Residual Stress
In this paper we present a new model for calculating the capacitance of MEMS sensor with corrugated diaphragm. In this work the effect of residual stress is considered on deflection of diaphragm and capacitance of sensor. First, a new analytical analyzes have been carried out to derive mathematic expressions for central deflection of corrugated diaphragm and its relationship with residual stres...
متن کامل